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Abstract— Many spacecraft provide an abundance of system
status telemetry that is monitored in real time by ground
personnel and archived to allow for further analysis. In the
flight control room, controllers typically monitor these
values using text or graphical displays that incorporate
individual parameter limit checking or simple trend
analysis. Recent developments in data mining techniques
for anomaly detection make it possible to use the wealth of
archived system data to produce more sophisticated system
health monitoring applications.  These “data driven”
applications are capable of characterizing and monitoring
interactions between multiple parameters and can
complement existing practice to provide valuable decision
support for mission controllers.

Data driven software tools have been successfully applied to
mission operations for both the Space Shuttle and the
International Space Station. These tools have been applied
to engineering analysis of spacecraft data to detect unusual
events in the data, and to real time system health
monitoring in the flight control room. Augmenting
traditional mission control software with advanced
monitoring tools can provide controllers with greater insight
into the health and performance of the space systems under
their watch. Adding heuristic rule based methods that
encode system knowledge obtained from seasoned mission
controllers can also be helpful to less experienced personnel.
We will describe how such techniques have been applied to
NASA mission control operations and discuss plans for
future mission control system health monitoring software
systems. !
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1. INTRODUCTION

Most NASA mission controllers are responsible not only
for operating their designated spacecraft subsystems to meet
mission objectives, but also for monitoring those
subsystems to ensure that they are operating properly.
Insight into subsystem performance is provided by down
linked telemetry data produced by sensors on board the
spacecraft. In the flight control room, controllers typically
monitor these values in real time using text or graphical
displays that incorporate individual parameter limit
checking or simple trend analysis. Mission control
engineering support groups are available to perform more in
depth analysis of collected telemetry to assess system health
or to explain unusual phenomena observed in system
behavior.

Recent developments in data mining techniques for anomaly
detection make it possible to use the wealth of archived
spacecraft system data to produce advanced system health
monitoring applications that can aid mission controllers and
engineering analysts in their tasks. These “data driven”
applications are capable of characterizing and monitoring
interactions between multiple parameters and can provide
valuable decision support for mission controllers and
engineers.

Several data driven software tools, including Orca and the
Inductive Monitoring System (IMS), have been successfully
applied to mission operations for both the Space Shuttle
and the International Space Station. Orca [1] is a data
mining tool that searches for unusual data points, or
outliers, in multivariate data sets by calculating the distance
of each data point from neighboring points. The presence of
outliers in spacecraft system data is of interest to mission
controllers because they may indicate malfunctioning
system components. The IMS tool [2] uses a data mining
technique called clustering to analyze archived spacecraft
data and characterize nominal interactions between selected
parameters. This characterization, or model, of normal
operation is stored in a knowledge base that can be used for
real time system monitoring or analysis of archived events.
Spacecraft data is compared with the nominal model built
by IMS to produce a measure of how well the data matches
the normal behavior defined by the training data.
Significant deviations from the nominal system model can
alert the controller to a system malfunction or precursor to a
significant failure.



Supplementing current mission control software with
advanced monitoring tools, such as Orca and IMS, can
provide controllers and engineers with greater insight into
the health and performance of the space systems under their
watch. The addition of heuristic rule based methods that
encode system knowledge obtained from seasoned mission
controllers can also be helpful to less experienced personnel.
We will discuss how these tools and techniques have been
used to complement existing NASA mission control
practices and present plans for future mission control system
health monitoring software deployments using these
technologies.

2. STANDARD MCC SOFTWARE TOOLS

The NASA Mission Control Center (MCC) at the Johnson
Space Center (JSC) employs a standard suite of certified
software tools in the flight control rooms. Individual
controller disciplines may also introduce specialized
software tools suitable for their particular task. Core
software applications used for data monitoring in the MCC
include the Information Sharing Protocol (ISP) data
distribution system, the MSK-View and RTPLOT data
display tools, the ELOG event logging utility, and the
ISPATOM computation tool.

Information Sharing Protocol (ISP)

The Information Sharing Protocol (ISP) software is a
distributed system that supports real-time telemetry
distribution and messaging in the MCC. [3] It is the
primary spacecraft data feed for the mission control
consoles. In addition to subscribing to telemetry data,
console applications can publish values to ISP to allow
other software applications to subscribe to and use locally
computed results along with the real-time telemetry data.

MSK-View

MSK-View is a program used to display ISP data in a
tabular format defined in a screen configuration file. [4]

Figure 1 shows an example of a display created with MSK-
View. It allows the user to define screens with
alphanumeric labels and parameter values along with simple
line drawings and screen navigation buttons. Each object
on the screen can be assigned a color as well. The MSK-
View application can subscribe to an ISP data feed and
provide a text display of real-time data values as they are
received. In addition, the display can show different user
defined text strings based on the value of a data parameter.

For instance, a display element can be defined to display
“HIGH” if a data value exceeds a high limit value, and
“LOW” if it is less than a low limit value. This gives
controllers a way to detect off nominal parameters on their
MSK-View screens using predetermined limit values.

RTPLOT

The RTPLOT (Real Time Plot) program provides a means
of plotting real-time or played-backed data accessed via the
ISP data feed. [5S] RTPLOT subscribes to the ISP data
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Figure 1: Sample MSK-View Screen

stream and provides line plots of one or more parameter
values over time. (Figure 2). It allows the user to define
upper and lower limits for each plot, which appear as red
dashed lines on the plot display. The plot can be iconified
to a smaller size to conserve screen real estate. If a
parameter on an iconified plot falls outside a limit, the plot
name on the icon will be displayed in red to alert controllers
of the out of limit condition. RTPLOT also includes
routines to estimate future data values by fitting lines or
parabolic curves to previously plotted data.
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Figure 2: Sample RTPLOT Display
ELOG

The ELOG event logger program provides a means to
automatically log telemetry change events in real time. [6]

ELOG defines an event as a comparison (greater than, equal
to, etc.) between an ISP parameter value and a constant.

When the comparison is true for a specified amount of time,
the event is logged to a file and displayed in a list on the
controller’s screen. The display will show the time the



event occurred and a text message describing the event with
a user selected background color. (Figure 3) The controller
can acknowledge that they have seen an event in the ELOG
display by clicking on that list item with the mouse. An
acknowledged event will be displayed in reverse video.
Audible alarms can be associated with critical events to
attract the controller’s attention. Like RTPLOT, the ELOG
display windows can be iconified to save screen space. An
ELOG icon will show the name of the window, a count of
how many events have been logged in that window, and a
count of how many of those events have not been
acknowledged.
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Figure 3: Sample ELOG Display
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ATOM

The Advanced Tool of Math (ATOM) is a software tool that
allows controllers to define and execute real time
computations on telemetry data by specifying equations
using ISP parameter identifiers. [7] ATOM will parse the
user defined equation, subscribe to the required real-time
telemetry values, calculate results as new data arrives, and
publish the results back to ISP for use by other
applications. ATOM provides common mathematical and
comparison functions, including square root, logarithmic,
and trigonometric functions. It can also perform
calculations on time series data, such as average, standard
deviation, and future value prediction using a least squares
line fit. Program flow control is provided by IF, WHILE,
and CASE statements. Basic data structures like arrays and
stacks can also be used in the calculations.

3. DATA MINING FOR MISSION CONTROL

NASA maintains years of archived Space Shuttle and
International Space Station (ISS) telemetry data in the
Operational Data Reduction Complex (ODRC) at the
Johnson Space Center. This archive can provide a wealth of
information about the behavior of individual telemetry
parameters and how those parameters correlate to each other.
The standard suite of mission control software tools is able
to convey current data and system status to controllers, but
takes little advantage of information available on the
historic behavior and interactions of the parameters.

Methods from the field of data mining are useful for
analyzing and characterizing the type of data found in the
ODRC archive. In particular, recent developments in data
driven anomaly detection techniques can process the data to
find unusual events, or outliers, in data for a given

subsystem. These anomaly detection techniques can also
automatically analyze archived nominal system data to
characterize normal system performance.  Comparing
incoming real-time data to that nominal model can let the
user know if the current system behavior differs from
previous system performance.

One powerful feature of these data mining techniques is the
ability to simultaneously analyze multiple parameters. This
allows them to discover and model interactions between
related parameters that might be difficult to notice when
monitoring those parameters individually.

4. ORCA DISTANCE-BASED OUTLIER DETECTION

Orca is a data mining tool that analyzes multivariate data
sets. [1] It uses a nearest neighbor approach to outlier
detection. Each group of parameter values is considered a
vector that defines a point in a multi-dimensional vector
space. For each point in the data set, Orca locates other
points in the data set that are closest to that point, called the
point’s nearest neighbors. Distance between points is
measured with the Euclidean distance measure. The
program outputs a score for each point representing the
average distance to the nearest k& neighbors in the data set.
The value of £k is specified by the user. Points that have a
larger average distance to their nearest neighbors than most
other points in the data set are considered outliers. The
Orca program is able to find outliers within a single data
set, or compare one data set with another to determine
which points in the first data set are unusual in comparison
to the second set.

One approach to using Orca with spacecraft telemetry is to
form data vectors by grouping a number of concurrent
parameter values collected from sensors on a given
spacecraft subsystem and searching for outliers among those
vectors. For instance, vectors could be formed from
temperature, pressure, and fuel flow rates in a rocket engine.
Values collected simultaneously at regular time intervals
from each of the sensors would form the data set. An Orca
analysis of this data set can locate data from time periods
during the engine firing that display unusual characteristics
compared with the rest of the data. Those anomalous data
points may be symptoms of engine malfunctions, such as a
faulty pressure regulator or an incorrect fuel-oxidizer mixture
ratio.

5. IMS: INDUCTIVE MONITORING SYSTEM

The Inductive Monitoring System (IMS) is a tool that uses
a data mining technique called clustering to extract models
of normal system operation from archived data. [2] Like
Orca, IMS works with vectors of data values. IMS analyzes
data collected during periods of normal system operation to
build a system model. It characterizes how the parameters
relate to one another during normal operation by finding
areas in the vector space where nominal data tends to fall.



These areas are called nominal operating regions and
correspond to clusters of similar points found by the IMS
clustering algorithm. These nominal operating regions are
stored in a knowledge base that IMS uses for real-time
telemetry monitoring.

During system monitoring, IMS reads real-time or archived
data values, formats them into the predefined vector
structure, and searches the knowledge base of nominal
operating regions to see how well the new data fits the
nominal system characterization. For each input vector,
IMS returns the distance that vector falls from the nearest
nominal operating region. Data that matches the normal
training data well will have a deviation distance of zero. If
one or more of the data parameters is slightly outside of
expected values, a small non-zero result is returned. As
incoming data deviates further from the normal system data,
indicating a possible malfunction, IMS will return a higher
deviation value to alert users of the anomaly. IMS also
calculates the contribution of each individual parameter to
the overall deviation, which can help isolate the cause of the
anomaly.

6. MISSION CONTROL APPLICATIONS

The Orca and IMS tools have both been applied in NASA
mission control to support real-time telemetry monitoring

g | g Foge
P e
Cipews i # 4 i

and engineering analysis of mission data. In support of the
JSC Mission Evaluation Room (MER) engineering analysis
activity, the tools were applied to data from the Space
Shuttle Wing Leading Edge Impact Detection System
(WLEIDS) to find potential impact signatures. In the
International Space Station (ISS) flight control room they
have been used to build real-time health monitoring
applications for the ISS Control Moment Gyroscopes.

Space Shuttle Wing Leading Edge Impact Detection System

The Shuttle WLEID system was developed in response to
the loss of the Columbia orbiter on the STS-107 mission.
During the launch of STS-107 a piece of foam shed from
the Shuttle external fuel tank struck the leading edge of the
orbiter’s left wing, compromising the thermal protection
system. This damage resulted in the tragic loss of vehicle
and crew during reentry due to overheating and failure of the
internal wing structure. [8]

The WLEIDS consists of 132 single axis accelerometers
mounted along the length the orbiter leading edge wing
spars. (Figure 4) During launch, the accelerometers collect
data at a rate of 20 KHz and store that data onboard for
subsequent downlink to Mission Control. Within 6 to 8
hours of launch, summary files containing periodic sub-
samples of the data collected by each accelerometer are down
linked to the MER for analysis to find potential impact
signatures. This analysis must be performed within 24 to
48 hours of the launch so the results can be used to schedule
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detailed on-orbit wing leading edge inspections using
cameras mounted on the Shuttle robotic arm.

The basic WLEIDS analysis is performed by MER
engineers by visually examining three dimensional graphs
of the summary data that show accelerometer location and
vibration magnitude along a time axis. (Figure 5). The
analysts search the graphs for localized peaks among the
normal vibration signals caused by the Shuttle engines and
aerodynamic forces. Unusual peaks in the data might have
been caused by an impact on the wing leading edge. When
possible impact events are identified, a half second of raw
data collected by the affected accelerometer at that time is
downloaded for more thorough analysis.
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Figure 5: Sample WLEIDS Summary File Graph

The Orca and IMS tools have been used to support the
WLEIDS analysis on three Shuttle launches. The goal is to
provide a quick initial scan of the WLEIDS summary files
to locate unusual points and help focus the MER analysts’
efforts. For each accelerometer sensor, vectors were formed
from concurrent values collected from that sensor and seven
nearby sensors. Orca is used to search for outliers within
the data collected during the current launch. Prior to the
launch, IMS was used to analyze normal data from previous
launches to characterize typical vibration patterns for each
group of accelerometers. Data from the current launch is
compared to this characterization to identify unusual
vibration patterns that might have been caused by impact
events.

To gauge the effectiveness of the data mining tools, we
compared Orca and IMS results to visual WLEIDS
summary file analysis performed by MER engineers on the
STS-115 launch of Space Shuttle Atlantis. The analysts
classify the events they identify as critical, probable, or

questionable based on the likelihood that the data signature
was caused by an impact. Their analysis of the STS-115
launch WLEIDS summary data produced 6 critical events,
23 probable events, and 2 questionable events. The Orca
analysis placed all critical events in the top 50 outliers.
IMS identified 334 interesting events, divided nearly evenly
between the two wings. Those events included all 6 critical
events, 18 of 23 probable events, and all of the questionable
events found by the MER analysts. Most of the anomalies
identified by Orca and IMS that were not noted by the
analysts could be eliminated as normal global vibrations
that shook the entire vehicle. Additionally, during all
launches where Orca and IMS have been used, the tools
identified several lower energy vibration signatures that did
not stand out in the visual data inspection. These events
were investigated with raw WLEIDS data downloads from
the affected sensors. Fortunately all of the potential impact
events identified in the WLEIDS summary data were shown
to be the result of non-damaging phenomena, such as
aerodynamic events or sensor data spikes, and all missions
concluded with safe and uneventful reentry and landing.

1SS Control Moment Gyroscopes

The International Space Station (ISS) Control Moment
Gyroscope (CMQ) attitude control system consists of four
large gyroscopes, each mounted in a gimbal system that can
rotate the CMG about the two axes perpendicular to the
gyroscope spin axis. (Figure 6) The CMGs operate as non-
propulsive attitude control devices that exchange
momentum with the ISS through induced gyroscopic
torques.

Figure 6: ISS Control Moment Gyroscopes

As they have aged some of the CMGs have degraded
enough to malfunction and require replacement. A failed
CMGI1 was replaced with a new unit in July 2005, and a
faulty CMG3 was replaced in August 2007. Given their
history, the ISS Attitude Determination and Control Officer
(ADCO) flight controllers are interested in detecting early
symptoms of degradation in the CMGs. A deployment of



data driven system health monitoring applications in the
ISS flight control room is assisting with that task.

Working with the ADCO flight controllers, 13 CMG
parameters were selected for real time monitoring. These
parameters include CMG vibration, bearing temperatures,
rotation speed, gimbal rates, electrical current, and ISS
rotation rates, along with rates of change of the temperatures
and electrical current. Archived data collected over a period
of 10 months for CMGl1, 2, and 4 was analyzed. Six weeks
of available data for the recently installed CMG3 was
analyzed for that unit. The data was sampled at a 1 Hz rate
and formed into vectors of 13 values. Each CMG was
analyzed individually to capture its unique characteristics.

The first operation with the CMG data was to remove any
anomalies from the archived data. This was accomplished
by searching for outliers within each data set using the Orca
tool. Data records with significant deviations relative to the
remainder of the data for that CMG were removed. These
deviations were typically caused by data corruption or minor
anomalies in CMG operation. Once the archived CMG data
had gone through this cleaning process, the remaining
nominal data was used by IMS to build a monitoring
knowledge base for each CMG.

The IMS monitoring application was integrated with the
ISP data server software to access real-time telemetry in the
ISS flight control room. Four IMS processes, one per
CMGQG, are run on the ADCO flight control console to
provide continuous monitoring. Once per second, when
data is available, each IMS process will query the
appropriate CMG knowledge base and return the amount of
overall deviation, if any, from the nominal training data. It
will also return the contribution of each individual
parameter to any deviation to aid in isolating the source of
the deviation. These results are published back to the ISP
data stream for access by other software applications.

Figure 7: IMS Detection of a CMG Electronics Fault

The ADCO controllers have developed RTPLOT displays to
graph the IMS CMG results in real-time on their control
console. These graphs read the IMS results from the ISP
server and show the amount of total IMS deviation over
time for each CMG (Figure 7), along with the individual
parameter contributions. The controllers also use ELOG
rules to notify them when IMS detects unusual CMG
behavior. The IMS output acts as a decision aid, alerting

the controllers to CMG anomalies and prompting them to
investigate unusual occurrences. It also serves as a cross
check for atypical events detected by other means. For
example, when a controller sees a pattern on their telemetry
display that is different from what they expect, they can
check the IMS output for that time period to see if this type
of behavior had occurred previously. If IMS shows
minimal deviation during that time, then the current data
matches previous behavior seen in the nominal IMS training
data. If IMS shows a significant deviation during that time,
further investigation may be warranted.

7. HEURISTIC FAULT IDENTIFICATION

The IMS processes monitoring the ISS Control Moment
Gyroscopes can alert the controllers when a CMG deviates
from typical behavior, but the basic IMS routines do not
identify the fault that caused the deviation. The ADCO
controllers would like to receive explicit alerts in the event
of particular CMG faults when possible. Some of these
fault signatures are straightforward enough to encode as
monitoring rules and integrate with the IMS console
software.

One relatively common, but recoverable, CMG fault is a
transient condition in the CMG electronics assembly that
the ADCO controllers call an “EA Fault”. This event is
characterized by a brief electrical current spike beyond a
threshold value accompanied by the setting of an error bit in
the electronics assembly. A routine was added to the IMS
monitoring software that watches for the occurrence of an
appropriately sized current spike and the setting of the
electronics assembly fault bit within a short time window.

If both of these events occur within that time span, IMS
will set an EA Fault bit on the ISP data stream to alert the
controllers of the incident.

Another less frequent incident is a Loss of Comm fault that
occurs when a CMG experiences problems with the network
connection to the ISS computer responsible for
commanding the unit and gathering CMG sensor data. This
event is automatically recognized by ISS on board fault
detection logic, which initiates a recovery procedure to
reestablish the connection. This recovery procedure results
in transmission of several specific status messages to the
ground controllers. Watching for these status changes
allows the IMS Loss of Comm detection routine to detect
when the event has occurred and set the appropriate alert bit
in the ISP data server. The routine also detects when a
successful recovery has occurred and resets the alert bit.

Although these heuristic fault identification abilities do not
cover all possible fault scenarios, they add value by
enabling the controller to quickly determine the cause of
these more common anomalies. This can be particularly
useful for less experienced controllers that may not have
seen these particular fault signatures. Additional fault
detection routines may be incorporated in the future.



8. SUMMARY AND FUTURE WORK

Through practical application, it has been demonstrated that
data driven system health monitoring applications can be
useful in a space mission operations setting. Many
spacecraft have extensive archives of telemetry data available
that can be advantageously exploited by data mining
methods. Two data mining tools, Orca and the Inductive
Monitoring System, have been used to analyze data from
the Space Shuttle and International Space Station to search
for anomalous data points that could be indications of a
fault or damage to the spacecraft. Providing information on
possible system anomalies in a timely manner provides
controllers and mission support engineers with helpful
decision support and enables more efficient and effective
execution of their duties. The inclusion of fault
identification routines further simplifies their tasks.

These initial tool deployments in the NASA JSC mission
control center have demonstrated the utility and
effectiveness of data driven system health monitoring
methods in two disciplines, but the applications are not
limited to just these examples. There are many areas with
rich archived data repositories where these and similar
techniques can be applied. Mission controllers from several
ISS disciplines, including power management, thermal
control, and life support, have expressed interest in similar
system monitoring tools. Now that the software has been
integrated with the mission control data systems, expansion
of the capability is primarily a matter of identifying relevant
parameters to monitor and performing the archived data
analysis. Work is beginning now to develop monitoring
capability for ISS thermal control systems.

Eventually we plan to develop tools that allow mission
controllers to build their own data driven monitoring
applications. They will specify which parameters to
monitor, what time periods to include in the nominal
training data, and any computations that should be
performed on the raw telemetry data. The tool set will
retrieve the desired archived training data, remove spurious
data points using outlier detection, and build a new
monitoring knowledge base and an appropriate monitoring
application configuration to run on their control console.

A useful enhancement to the current monitoring software
would be the ability to automatically detect operating mode
changes in the monitored system and switch to a targeted
monitoring knowledge base developed specifically for that
mode. For instance, the ISS is flown in different
orientations and configurations during different mission
phases. The behavior of the CMGs can differ in the various
configurations. Rather than building one large knowledge
base per CMG that covers all cases, as in the current
deployment, a separate knowledge base could be built from
archived data collected during each ISS configuration, then
consulted for real-time monitoring when the ISS is in that
configuration. This would provide more accurate and
efficient monitoring capability.

Another application of data driven monitoring to explore is
the use of supervised learning methods to help identify fault
signatures. If examples of fault behavior are available in the
archived data, supervised learning algorithms, such as
decision tree or support vector machine based techniques,
may be able to analyze the data and distinguish between
different types of fault behavior and normal operation. If
the monitored system exhibits unusual behavior, fault
characterizations from the supervised learning algorithm
could help controllers identify the cause of the anomaly.
These techniques could allow automated fault identification
in cases that are too complex to be encoded in heuristic
rules.
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